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Abstract
The dynamical equations of an electromagnetic field coupled with a conducting
material are studied. The properties of the interaction are described by a
classical field theory with tensorial material laws in spacetime geometry.
We show that the main features of superconducting response emerge in
a natural way within the covariance, gauge invariance and variational
formulation requirements. In particular, the Ginzburg–Landau theory follows
straightforwardly from the London equations when fundamental symmetry
properties are considered. Unconventional properties, such as the interaction
of superconductors with electrostatic fields are naturally introduced in the
geometric theory, at a phenomenological level. The BCS background is
also suggested by macroscopic fingerprints of the internal symmetries. It
is also shown that dissipative conducting behaviour may be approximately
treated in a variational framework after breaking covariance for adiabatic
processes. Thus, nonconservative laws of interaction are formulated by a purely
spatial variational principle, in a quasi-stationary time discretized evolution.
This theory justifies a class of nonfunctional phenomenological principles,
introduced for dealing with exotic conduction properties of matter (Badı́a and
López 2001 Phys. Rev. Lett. 87 127004).

PACS numbers: 02.40.−k, 03.50.De, 13.40.−f, 74.20.De

1. Introduction

Classical electrodynamics is commonplace in several areas of mathematical physics. Thus,
many of the physical problems linked to the applications of function theory or differential
geometry are taken from electromagnetism. In particular, we recall the very elegant
formulation of the electromagnetic (EM) field in spacetime geometry. The full set of Maxwell
equations may be simply expressed as dF = 0 and δF = J , for F (the electromagnetic
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field tensor) a closed 2-form defined on the four-dimensional Minkowski space, J the current
density 1-form and δ the so-called codifferential operator [1]. The closedness condition of F
(dF = 0) allows a local representation in terms of a potential 1-formA, introduced byF = dA.
Maxwell laws may then arise as the Euler–Lagrange equations for an action functional in terms
of A. Within this geometric formulation of electromagnetism, the consideration of symmetry
properties simplifies and illuminates the theory. In particular, covariance (which assures
invariance of the equations under transformations of the Lorentz group) is very convenient
and gauge invariance (invariance under transformations of the potential A �→ A + dχ ) must
be satisfied.

All the above ideas are mainly established in the study of the electromagnetic (EM)
field in vacuum, but can also be of great help in the research of interactions with electric
charges within macroscopic media. Thus, it is known that the most relevant aspects of
superconductivity: expulsion of magnetic fields, zero resistance, flux quantization and the
phase–voltage relationship at the gap between superconductors, may be straightforwardly
obtained from gauge invariance considerations [2].

Recently, and motivated by some experimental puzzles in superconducting physics,
several additional tools, conventionally restricted to the research of EM fields and sources
in vacuum, have been applied for the description of material laws. To be specific, spacetime
covariance of the phenomenological equations of superconductivity has been considered as
the appropriate framework for explaining the still unclear interaction of these materials with
electrostatic fields. Essentially, and inspired in the principle of Lorentz covariance, when the
electric and magnetic fields are treated at the same level, one predicts both electrostatic and
magnetostatic field expulsion with a common penetration depth λ [3–5]. This formulation
has been used [6] as a basis for explaining the so-called Tao effect, an intriguing experimental
observation, in which superconducting microparticles aggregate into balls in the presence of
electrostatic fields [7]. However, both theoretical objections [8] and experimental results [9]
raise concerns on the universality of the common λ treatment.

We want to emphasize that the topic of electrostatic field expulsion was already addressed
by the London brothers [10] in the early days of superconductivity. Nonetheless, owing to the
lack of experimental confirmation [11], they eventually decided to formulate their celebrated
equations of superconductivity in a noncovariant form. Such a lack of relativistic covariance
leads to theoretical difficulties, but they are conventionally avoided by postulating the absence
of electrostatic charges and fields within the sample. This point of view has been adopted by
the scientific community over decades, until the revived interest mentioned in the previous
paragraph.

In the light of the above comments, it is apparent that finding a physically sound covariant
expression for the material physical laws, in intrinsic geometric terms may be of help. In
fact, it will be shown that this will not only release the theoretical dissatisfaction caused
by using a somehow amended theory, but it will also allow us to incorporate new physical
phenomena in a natural way. In an effort to produce the most concise and general equations,
we propose in this work, the use of differential forms on Minkowski space, within the area
of electrical conductivity. However, it should be emphasized that relativistic exactitude is not
meant to influence the kinetics of superconducting carriers. What one tries to do is to write the
physics in the clearest form so as to get information on the underlying mechanism, through
the macroscopic (phenomenological) electrodynamics. Being electrodynamics a fundamental
interaction in the case of superconductors, one tries to scrutinize within the nature of the
phenomenon, taking advantage of the EM field symmetries.

As a first approximation to the problem, we will restrict ourselves to linear effects in the
material response, i.e. nonelectromagnetic degrees of freedom enter through the linear laws
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J = � · F or J = � · A + ω, with � ∈ T 2
1 and � ∈ T 1

1 field-independent tensors, and ω a
gauge adjusting 1-form. Although simple, these ansatzs provide celebrated material laws.

The study of the law J = � · A + ω, with the requirement of gauge independence,
will straightforwardly lead to the phenomenological London [10] and Ginzburg–Landau (GL)
equations in a covariant form, for the trivial case �ν

µ = αδν
µ (here, δν

µ stands for the Kronecker
symbol). This will serve as a basis for postulating a Lagrangian density, still a controversial
topic related to the time-dependent GL theory [12]. On the other hand, nonequal diagonal terms
in � will suggest relativistic BCS effects, in the manner introduced in [9]. Unconventional
degrees of freedom, such as electrostatic charges will be unveiled in our gauge-independent
proposal.

The study of the law J = � ·F will lead to the concept of dissipative interaction, and thus
to the absence of a direct variational formulation. However, we show that under quasistationary
evolution, and following prescribed covariance breaking, one may issue a 3D variational
principle, in terms of differential forms, at least for certain nonconservative interactions.
This concept will also allow us to address some open questions in superconductivity. In
particular, we justify the use of restricted variational principles in applied superconductivity
for the so-called hard materials. At a first approximation, these superconductors are treated
by a nonfunctional law, in which the electrical resistivity jumps from zero to infinity, when a
critical value in the current density is reached [13].

The work is organized as follows. First, some mathematical background material,
regarding notation and operations with differential forms is recalled in section 2. The
presentation is conceived so as to provide the minimal tools for using the powerful geometric
language in what follows. Also, the variational formulation of pure or coupled electromagnetic
problems is reviewed. For further application, we emphasize the relation between gauge
invariance and the structure of the Lagrangian density. Section 3 is devoted to the proposal
of covariant and gauge-invariant material laws for conducting media [J (F) and J (A)].
We show that a variational formulation for the covariant Ohm law does not exist within
the electromagnetic sector, and that, on the contrary, superconducting dynamics finds a
very appropriate host in such a formalism. Then, in section 4 we give the rules for
breaking covariance in the formulation from the geometrical point of view. We introduce
a restricted variational theory and exploit the benefit of using it by applying these ideas to
exotic superconducting systems, in which the material law is a nonfunctional relation. The
implications of our analysis and further proposals for the theoretical studies on conducting
materials are summarized in section 5.

Rationalized Lorentz–Heaviside units will be used for the electromagnetic quantities in
this paper (with c = 1).

2. Mathematical background

2.1. Covariant formulation of electromagnetism

Covariance is a well-established requirement for fundamental physical theories. In the more
general statement it means that the physical laws can be formulated in intrinsic geometric
terms, and therefore they are independent of local coordinate descriptions, the reference
system. There are sometimes further requirements associated with some Lie group invariance,
e.g., the Galilean group in classical mechanics or the Lorentz group in special relativity.

2.1.1. Basic notation and definitions. The classical geometric treatment of the Maxwell
equations is formulated in a spacetime manifold M endowed with a flat Lorentzian metric g
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(here we choose the signature (−, +, +, +)). Recall that a pseudo-Riemannian metric g in a
manifold M provides us with an isomorphism of the C∞(M)-module of vector fields in that of
1-forms, ĝ : X(M) → ∧1

(M), given by 〈̂g(X), Y 〉 = g(X, Y ), which allows us to transport
the scalar product from X(M) to

∧1
(M). We shall use the same notation g for such a product

g(α1, α2) = g(̂g−1(α1), ĝ
−1(α2)), α1, α2 ∈

∧1
(M). (1)

We also recall that given an n-dimensional pseudo-Riemannian manifold M, we define for
any index p � n a C∞(M)-linear map star from the C∞(M)-module of p-forms into that of
(n − p)-forms by means of (see, e.g., [14])

α ∧ 	β = (−1)sg(α, β) Vol ∀ α, β ∈
∧p

(M) (2)

where g(α, β) is the scalar product in
∧p

(M), i.e. if α and β are decomposable p-forms,
α = α1 ∧ · · · ∧ αp and β = β1 ∧ · · · ∧ βp, then g(α, β) = det(g(αi, βj )). Vol is our choice
of the volume form associated with the metric; it is given by

Vol = ±
√

(−1)s det g dx1 ∧ · · · ∧ dxn, (3)

where s denotes the signature, the number of negative squares appearing in the quadratic form
associated with g when written in its diagonal form.

In affine coordinates for the particular case of Minkowskian space M (for which n = 4
and s = 1), {xµ | µ = 0, 1, 2, 3}, the signature is 1 and for α = αµ dxµ and β = βµ dxµ in∧1

(M), we find (recall summation over repeated indices)

g(α, β) = gµναµβν = −α0β0 + αiβi (4)

and make the choice

Vol =
√

−det g dx1 ∧ dx2 ∧ dx3 ∧ dx0 = dx1 ∧ dx2 ∧ dx3 ∧ dx0, (5)

so that in a local basis

	(dx0) = −dx1 ∧ dx2 ∧ dx3, 	(dx1) = −dx2 ∧ dx3 ∧ dx0,

	(dx2) = dx3 ∧ dx0 ∧ dx1, 	(dx3) = −dx0 ∧ dx1 ∧ dx2,
(6)

and more generally

	β = −β0 dx1 ∧ dx2 ∧ dx3 − β1 dx2 ∧ dx3 ∧ dx0 + β2 dx3 ∧ dx0 ∧ dx1

−β3 dx0 ∧ dx1 ∧ dx2. (7)

Similarly for 2- and 3-forms, the star operator is determined by

	(dx0 ∧ dx1) = −dx2 ∧ dx3, 	 (dx0 ∧ dx2) = dx1 ∧ dx3,

	(dx0 ∧ dx3) = −dx1 ∧ dx2, 	 (dx1 ∧ dx2) = dx0 ∧ dx3,

	(dx1 ∧ dx3) = −dx0 ∧ dx2, 	 (dx2 ∧ dx3) = dx0 ∧ dx1,

(8)

and

	(dx1 ∧ dx2 ∧ dx3) = −dx0, 	 (dx0 ∧ dx1 ∧ dx2) = −dx3,

	(dx0 ∧ dx1 ∧ dx3) = dx2, 	 (dx0 ∧ dx2 ∧ dx3) = −dx1.
(9)

By defining the pairing for scalars as g(1, 1) = 1 we also find

	(1) = dx1 ∧ dx2 ∧ dx3 ∧ dx0, 	(dx0 ∧ dx1 ∧ dx2 ∧ dx3) = −1. (10)

Note that if ω ∈ ∧p
(M), then (	 ◦ 	)ω = (−1)p(n−p)+sω and, in particular, in the Minkowskian

case for which n = 4, s = 1, (	 ◦ 	)ω = (−1)p+1ω.
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As usual, the exterior derivative of a p-form over an n-dimensional manifold is defined by

dω = ∂ωi1...ip

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip . (11)

On the other hand, the codifferential operator is defined by δ = 	d	, it maps p-forms into
(p − 1)-forms, and d ◦ δ + δ ◦ d is the Laplacian (or D’Alembertian) of the manifold.

The space of the physical variables F for the EM classical field theory is the set of closed
2-forms in M. Let us introduce some geometric objects and manifolds appropriate for a
detailed description of the EM theory. This will serve as a link between the geometric language
and the more conventional (analytical coordinate dependent) statement of the problem. It is
well known that 2-forms in M are sections for the vector bundle λ : T ∗M ∧ T ∗M → M of
skew-symmetric (0, 2) tensors over M. For a given fibre bundle γ : E → M , we denote by
J 1γ the first jet bundle [15] of γ , the manifold of equivalence classes of sections s : M → E

with first degree contact at a fixed point m ∈ M . J 1γ is the natural geometric framework for a
system of first-order partial derivative equations (PDE). Elements of J 1γ are denoted by j 1

ms,
the equivalence class of all sections with zero- and first-order partial derivatives at the point m
equal to those of s. For a given section s, j 1s denotes the first jet lift, a section j 1s : M → J 1γ

defined by j 1s(m) = j 1
ms. Local coordinates in E adapted to the projection γ , {xµ, ya} with

{xµ} coordinates in M, determine associated local coordinates in J 1γ,
{
xµ, ya, za

µ = ∂xµya
}
.

Now, it is more transparent that a system of first-order PDE H(xµ, ya, ∂xµya) = 0 represents
just a submanifold P ⊂ J 1γ .

In particular, local adapted coordinates for λ : T ∗M ∧ T ∗M → M, {xµ,Fµν} with
F(m) = Fµν(m) dxµ ∧ dxν determine local coordinates for J 1λ

{xµ,Fµν,Gµν,σ = ∂xσ Fµν}. (12)

Closed 2-forms, i.e., sections F for λ fulfilling dF = 0, are such that their first jet bundle
lift j 1F : M → J 1λ goes to zero through skew-symmetrization. The skew-symmetrization
in J 1λ is a natural map sk3 : J 1λ → (T ∗M)∧3 defined by sk3

(
j 1
mF

) = dF(m). In local
coordinates,

sk3 ◦ j 1F(m) = 1
3 (Gµν,σ + Gσµ,ν + Gνσ,µ)(m) dxµ ∧ dxν ∧ dxσ . (13)

Similarly, the codifferential δ determines a natural map τ : J 1λ → T ∗M given by
τ
(
j 1
mF

) = δF(m). A local coordinate expression can be obtained through the previously
presented set of coordinate relations for the star operator.

2.1.2. Maxwell equations. Below, we show that the standard expressions of the Maxwell
equations in terms of vector calculus operators are recovered from the previous formalism
when a particular coordinate system is specified. The set of Maxwell equations is a system
of first-order PDE in the EM field F . Then, they can be geometrically described as a
proper submanifold P ⊂ J 1λ, or equivalently, as a family of geometric tensorial equations
in J 1λ whose set of solution points determines P. More precisely, Maxwell equations are
just dF = 0 and δF − J = 0, where J represents the 4-current density, either prescribed
or related to F through some material law. If J is prescribed J : M → T ∗M, then
P can be alternatively defined as P = sk−1

3 (0) ∩ τ−1(ImJ ). On the other hand, if
there is some relation J (F),J : T ∗M ∧ T ∗M → T ∗M (not necessarily linear), then
P = {

j 1
mF

∣∣sk3
(
j 1
mF

) = 0 and τ
(
j 1
mF

) = J (F(m))
}
.

In local affine coordinates

F = −Ei dx0 ∧ dxi + 1
2εijkB

i dxj ∧ dxk (14)

determines the electric and magnetic vector components of F , obviously coordinate (i.e.
reference frame) dependent. Here εijk is the totally skew-symmetric, Levi-Civita, tensor.
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Both dF = 0 and δF = J represent the covariant version of Maxwell equations. Let us
obtain their coordinate-dependent version.

The equation dF = 0 is given by

dF = −∂xj Ei dx0 ∧ dxi ∧ dxj + 1
2εijk∂x0Bi dx0 ∧ dxj ∧ dxk

+ 1
2εijk∂xl Bi, dxj ∧ dxk ∧ dxl = 0. (15)

Using the vector differential operator ∇ = (∂x1 , ∂x2 , ∂x3), dF = 0 becomes{∇ · B = 0
∇ × E + ∂x0 B = 0.

(16)

On the other hand, δF = J is given by

δF = −(∂x1E1 + ∂x2E2 + ∂x3E3) dx0 + (−∂x3B2 + ∂x2B3 − ∂x0E1) dx1

+ (−∂x1B3 + ∂x3B1 − ∂x0E2) dx2 + (−∂x2B1 + ∂x1B2 − ∂x0E3) dx3

= J ≡ −ρ dx0 + Ji dxi (17)

and, in vector analysis notation,{∇ × B − ∂x0 E = J
∇ · E = ρ.

(18)

Note that the chosen metric tensor (−, +, +, +) determines the 1-form representation for J ,
so that its corresponding 4-vector field is ĝ(J ) = ρ∂x0 + gijJj ∂xi . On the other hand, recall
that δJ = 0, the continuity equation (∂tρ + ∇ · J = 0 in standard notation), is a consistency
requirement for δF = J , easily obtained from δ2α = (−1)p+1 	 d2 	 α = 0 for any p-form
α ∈ ∧p. For further use, we give below the wave propagation expressions both in intrinsic
terms and in standard notation. They arise by taking the exterior derivative in equation (17),
i.e.

dδF = dJ . (19)

This admits the following coordinate form in terms of the D’Alembertian operator for our
metric

(
� ≡ −∂2

t t + ∇2
)

{
�B = −∇ × J
�E = ∂tJ + ∇ρ.

(20)

Let us now review the geometrical notation and properties of the vector potential. The
closedness condition dF = 0 can be (locally) integrated, and disappears from the theory,
by describing the EM field as the exterior differential of a 1-form A, the 4-potential 1-form,
F = dA. The potentials are local sections for the cotangent bundle π : T ∗M → M, and
F = dA is determined by the composition of the first jet lift and skew-symmetrization map,
F = sk2 ◦ j 1A, with sk2 : J 1π → T ∗M ∧ T ∗M. We have natural adapted coordinates
{xµ,Aµ,Aµ,ν ≡ ∂xν Aµ} at J 1π , and {xµ,Aµ, Fµν = Aµ,ν − Aν,µ} at T ∗M ∧ T ∗M. Then,
the electric and magnetic vectors are represented through the potential by{

E = −∇φ − ∂x0 A,

B = ∇ × A
(21)

with A ≡ −φ dx0 + Ai dxi . Note that in terms of our chosen metric tensor (−, +, +, +) the
vector field corresponding to the potential 1-form is ĝ(A) = φ∂x0 + gijAj∂xi .

On the other hand, the local representation of the EM field through a local integral potential
1-form gives way to nonuniqueness, with local gauge invariance symmetry A′ = A + dχ ;
quotient by this gauge invariance determines the classical physical degrees of freedom. Thus,
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it is important to note that the potentialA is not directly a physical quantity at the classical level.
However, recall that topological obstructions (F being closed but not exact) associated with the
configuration of the problem have sometimes experimental consequences; this is, for instance,
the case of the well-known Aharonov–Bohm effect, in which charged quantum particles are
influenced by the circulation of A in a multiply-connected region where the electromagnetic
field vanishes. From the physical point of view, gauge invariance is an additional requirement
of the theory whenever the potential appears, either in the material laws (phenomenological
or fundamental), interaction of the EM field with conducting samples, or in the variational
theories, where the action functional must be gauge invariant.

2.2. Variational principles of electromagnetism

The existence of a variational formulation is well known for fundamental theories and
mandatory if one wishes to connect the classical and quantum levels. In many cases, additional
degrees of freedom interacting with the EM field will also have their own kinetic and potential
Lagrangian terms, and the energy conservation law reflects the possible transfer between the
EM and other energies. However, it must be stressed that phenomenological theories do not
always permit a variational formulation, because dissipation of the EM energy can be balanced
by generation of other kinds of energy (usually thermodynamical), and the corresponding
degrees of freedom may be disregarded in the theory, i.e., the system under consideration is
open. This section is devoted to reviewing some examples of Lagrangian theories for the EM
field: free, interacting with prescribed 4-current and with an additional scalar field. A number
of specific features will be outlined for their application to the proposal of material laws in the
following one.

2.2.1. Free EM theory. The Lagrangian function for the free field theory, L : J 1π → R, is
given by

LVol = 1
2F ∧ 	F = 1

2 (E2 − B2) Vol (22)

Note that, being in fact a real function in T ∗M∧ T ∗M,L ◦ sk2 is constant along the fibres of
sk2 : J 1γ → T ∗M∧ T ∗M. This property is nothing but the gauge invariance at an algebraic
level; L takes the same value for two jets j 1

mA1 and j 1
mA2 whose difference j 1

mA2 − j 1
mA1 (the

jet bundle has a natural affine structure) is symmetric, i.e., sk2
(
j 1
mA1

) = sk2
(
j 1
mA2

)
. This also

means that the Lagrangian is singular, and given a solution section A for the Euler–Lagrange
equation, we can build physically equivalent solutions by adding to A arbitrary sections
A0 whose first lift is in the kernel of sk2. Obviously, A0 are nothing but closed 1-forms.
Maxwell equations are first-order PDE in the EM field F , and therefore are second-order
PDE in the potential A. Euler–Lagrange equations for a first-order Lagrangian are second
order. The second-order jet bundle J 2γ of a fibre bundle (E, γ,M) is defined in a similar
way to J 1γ , taking now equivalence classes of sections up to second-order derivatives. Now,
second-order PDE are in geometric terms submanifolds of J 2γ . The geometric description
of the Euler–Lagrange equations for a classical field theory goes through the Poincaré–Cartan
form �L = dSV

L + LVol (see [15] for a detailed description of the geometric treatment
of the Euler–Lagrange equations in classical field theories), which is an n-form in J 1γ for
n = dim M , and SV is a vector-valued n-form generalizing the vertical endomorphism in
tangent bundles, defined for each volume form V in M. From �L, the Euler–Lagrange form,
EL = (

γ 1
2

)∗
(dL∧Vol)+dh�L with dh the total derivative mapping r-forms in J 1γ into (r +1)-

forms in J 2γ , happens to be an (n + 1)-form in J 2γ . The geometric equation (j 2s)∗[EL] = 0
for unknown s represents the second-order partial differential equations (PDE) fulfilled by
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sections s of γ : E → M making stationary the action functional S(s) = ∫
L(j 1s) V, that

is, they are the Euler–Lagrange equations of the variational principle. In local coordinates{
xµ, ya, za

µ, za
µν

}
in J 2γ

EL =
(

∂L
∂ya

− d

dxµ

∂L
∂za

µ

)
dya ∧ V

d

dxµ
= ∂xµ + za

µ∂ya + za
µν∂za

ν
(23)

and its components are the well-known Euler–Lagrange equations in a coordinate form.
For the case of EM field theory, we find Gauss’ and Ampère’s law in vacuum

∂x0

(
∂L

∂(∂x0φ)

)
+ ∂xj

(
∂L

∂(∂xj φ)

)
≡ ∂xj (∂xi φ + ∂x0Aj) = 0 (24)

and

∂x0

(
∂L

∂(∂x0Ai)

)
+ ∂xj

(
∂L

∂(∂xj Ai)

)
≡ ∂x0(∂xi φ + ∂x0Ai) + δlj εilkε

kmn∂xj (∂xmAn) = 0. (25)

On the other hand, a direct application of Noether’s theorem, connected with the invariance
of the action under the Lorentz group, leads to the concept of canonical energy–momentum
tensor

�µ
ν = ∂L

∂(∂µAρ)

∂Aρ

∂xν
− δµ

ν L. (26)

As usual, a symmetrized and gauge-invariant version is preferred, in order to ease
interpretation. Thus, we will use the field symmetrizing technique [16]

T µν ≡ �µ
σ gσν + ∂σ (FµσAν), (27)

from which the conservation law ∂T µν/∂xµ = 0 follows immediately.
The 00 component of the (symmetrized) energy–momentum tensor T µν [15] is T 00 =

1
2 (E2 + B2), the classical EM energy. In local coordinates, the zero component of ∂xν T µν

represents the conservation of EM energy, and the spatial components are the conservation of
EM momentum. In particular, the continuity equation

∂x0T 00 + ∇ · (E × B) = 0 (28)

is the balance between the energy density time variation and power flow; integration of E × B
along the boundary of a compact region measures the power transfer out of it. Obviously, this
is not a conserved quantity for non-Lorentz-invariant Lagrangians.

2.2.2. Electromagnetic field with external sources. In the presence of sources (prescribed
electrical charge and current densities) for the EM field, an additional term A ∧ 	J in the
Lagrangian, i.e.

LVol = 1
2F ∧ 	F − A ∧ 	J (29)

determines the modified Euler–Lagrange equations

δF = J . (30)

Note that LVol = 1
2F ∧ 	F − A ∧ 	J is no longer constant along the fibres of the skew-

symmetric projection sk2. Thus, for a gauge transformation A �→ A + dχ ,

LVol �→ LVol + dχ ∧ 	J = LVol + d(χ 	 J ) − χd 	 J . (31)

The current density must fulfil the continuity equation δJ = 0 in order to maintain the
gauge invariance of the action functional. Then, the Lagrangian is modified by a divergence
term, which does not affect the dynamics of the system. We stress that gauge invariance is a



Geometric treatment of electromagnetic phenomena 14707

fundamental ingredient of the theory, not only forcing consistency for the Maxwell equations,
but also determining transformation properties for the Lagrangian densities or the material
laws.

In local coordinates the term −A ∧ 	J takes the form

(−ρφ + J · A)Vol (32)

as it can be easily computed from the action of 	 presented above.
In this case, the Euler–Lagrange equations take the form

∂x0

(
∂L

∂(∂x0φ)

)
+ ∂xj

(
∂L

∂(∂xj φ)

)
≡ ∂xj (∂xj φ + ∂x0Aj) = ∂L

∂φ
≡ −ρ (33)

and

∂x0

(
∂L

∂(∂x0Ai)

)
+ ∂xj

(
∂L

∂(∂xj Ai)

)
≡ ∂x0(∂xi φ + ∂x0Ai)

+ δlj εilkε
kmn∂xj (∂xmAn) = ∂L

∂Ai

≡ Ji, (34)

obviously equivalent to equation (18).
Eventually, the energy balance equation becomes

∂x0T 00 + ∇ · (E × B) = −E · J, (35)

showing that there is a transfer between EM energy and other modes. This may correspond
to reversible storage of energy by charged particles, irreversible thermodynamical losses, etc.
E · J is sometimes called thermodynamical activity.

2.2.3. Coupling with a scalar field: the Klein–Gordon equation. In some problems, the
current density will not be prescribed, but arise as a consequence of charged particles moving
in the EM field according to the electromagnetic force. New degrees of freedom have to be
incorporated into the Lagrangian density by writing J in terms of the particle positions and
velocities, and adding a kinetic term for the masses of the particles and possibly a potential
interaction term between them. If, at a macroscopic level, the number of particles allows us to
consider a continuum charge and current density, the total system will be described by the EM
and fluid fields. This could be a good approximation for some physical systems such as low
density plasmas. Nevertheless, the usual interaction of EM with matter is still unsatisfactorily
described in this way. Charged particles (electrons) move in a material lattice, with which they
interact, and interchange momentum and energy. Thus, new degrees of freedom (vibrational,
for instance) should be incorporated into the model. This may cause serious difficulties, and
in some instances a phenomenological material law may be of great help.

Just as a starting point for our subsequent proposal (section 3.3), we recall the simplest
theory that couples the electromagnetic phenomenon and a relativistic material field ψ in a
covariant form. Thus, if one considers a scalar spin-0 field representation for the dynamics of
the charged particles, the basic Lagrangian [17] may be written as

LVol = 1

2
F ∧ 	F +

h̄2

2m0
dψ̄ ∧ 	dψ − m0

2
ψ̄ψ Vol − V (ψ̄ψ) Vol + Lint Vol (36)

with

Lint Vol ≡ −A ∧ 	

{
h̄

2m0
[iq(ψ̄ dψ − ψ dψ̄) − q2

h̄
ψ̄ψA]

}
. (37)

Note that L has been split up as LEM + Lψ + Lint, indicating the self-interactions of both
fields, and a coupling term between them. The potential term V (ψ̄ψ) may also incorporate
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reversible interactions of the particle field with other degrees of freedom, as the underlying
material lattice.

As one can easily check, the Euler–Lagrange equations of the corresponding action
integral, when A, ψ and its complex conjugate ψ̄ are taken as independent variables, are
nothing but the coupled Maxwell and Klein–Gordon equations. Just, one has to identify the
electromagnetic current density (take ∂A in the Lagrangian) with the KG current density times
the basic electric charge (q), plus a vector potential related term, i.e.

J = h̄

2m0

[
iq(ψ̄ dψ − ψ dψ̄) − 2q2

h̄
ψ̄ψA

]
. (38)

3. Covariant material laws in conducting media

Interaction of the EM field with matter is described by some material law, an equation
determining the response of the medium through the appearance of charge and current densities
under an applied EM field, usually generated by sources which can be typically considered
far away from the area of interest. In principle, in order to propose simple material laws
one must take care of preserving the basic rules of any EM theory, that is, covariance and
gauge invariance. As already discussed, the existence of a variational principle depends on the
possibility of treating additional degrees of freedom associated with other kinds of energy that
balances the possible dissipation (or creation) of EM energy. In general, this will not be the
case for a phenomenological theory in which we are exclusively interested in the EM sector,
but there should be a Lagrangian density for more fundamental theories that try to consider
all the degrees of freedom present in the system under study.

Below, we present a material law fulfilling explicitly the first two requirements, covariance
and gauge invariance, which could describe the classical response of conducting matter,
but which does not allow a variational principle. Afterwards, we will introduce several
laws allowing a variational formulation, which will immediately lead to the concept of
superconductivity. The geometrical treatment will allow a natural upgrading of the theory, so
as to infer the covariant GL equations, as well as a first indication of the BCS background.

3.1. Nonvariational tensorial laws J (F)

In the following, we will consider an external EM field Fe generated by some given sources
outside a particular region Q of the space, which are incorporated into the problem through
appropriate boundary conditions on the boundary ∂Q, and a sample material in R0 ⊂ Q,
generating an additional EM field Fr as a response to the applied excitation. Here ∂Q is taken
far away from R0, so that the EM material response Fr can be neglected there. The local
current density J within the sample, with compact support in R0, will be determined by some
material law J (F),F = Fe + Fr . Therefore, we consider that the physical system is not
isolated, being fed by the external sources through the boundary, and possibly with dissipation
in the sample, i.e. transfer of EM energy into another kind (thermodynamical, mechanical,
etc). In general, the Lagrangian density obtained by replacing J in the Lagrangian used for
prescribed currents will not produce the correct Euler–Lagrangian equations. In fact, widely
used material laws determine Maxwell equations which are not variational. Then, dissipative
force densities are added to the free Euler–Lagrange equations by just writing the current
density as J (F) in equation (18). The simplest choice is a local first-order approximation.
In order to preserve the geometric flavour, a quite general law (under the pointed restrictions)
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may be handled as the tensorial equation, by introducing a (2, 1)-type tensor � contracted
with the EM (0, 2) tensor F to determine the 1-form current density J :

iXδF = 〈F, iX�〉 ≡ iXJ ⇔ Jµ = �νρ
µ Fνρ. (39)

Different components of the � tensor represent well-known EM versus matter interaction
behaviours. Thus

−ρ = �
0j

0 F0j + �
ij

0 Fij (40)

contains both electric and magnetic polarizability, while

Ji = �0k
i F0k + �

jk

i Fjk (41)

describes Ohm’s law and magneto-conductivity.
In passing, we note that the celebrated covariant form of Ohm’s law [18] Jµ + uµuνJν =

(1/R)Fµνuν , where uµ is the fluid 4-velocity, corresponds to the previous equation when
ui = 0, u0 = 1 and �

0j

i = (1/R)δ
j

i .
Eventually, the set of (Maxwell) equations to be solved in this obviously covariant and

gauge-invariant model of electromagnetic interaction is

dF = 0, iXδF = 〈F, iX�〉 ∀X. (42)

For instance, if one goes again to the case of linear isotropic conducting media, in the absence
of electrostatic charges, the wave diffusion equations dδF = d(� · F) become

∇2E = 1

R

∂E
∂t

+
∂2E
∂t2

∇2B = 1

R

∂B
∂t

+
∂2B
∂t2

.

(43)

They are the well-known equations describing the penetration of electromagnetic fields in
conducting media, and have to be solved supplemented by boundary conditions for the fields.

3.2. Variational scalar laws J (A)

Let us now consider a less classical material law, determined by a covariant relation between
the current density and the local potential field, J (A). It is apparent that an additional
current ω will have to be considered in order to preserve gauge invariance of J . In principle,
such additional current may look a purely mathematical artefact; however, as we will see,
widely accepted classical models of superconductivity are obtained in this way, and the new
current can be understood as the classical shadow of a more fundamental quantum dynamical
superconductivity theory. This geometric approach is therefore a natural way to generate
classical approximate models for macroscopic quantum properties of EM interaction with
matter.

We will consider purely variational problems, so that EM energy variations are balanced
by the energy variation of the additional field. At a first stage, we will analyse some simple
choices of the additional current to be incorporated into the interaction term, and will not
consider the origin of this new current, i.e., the underlying field and its corresponding kinetic
and self-interaction terms will be neglected in the Lagrangian dynamics. Later on, the new
field will be incorporated into the theory by a minimal coupling prescription.
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3.2.1. The London model (dω = 0). Let us consider first the following EM Lagrangian
density, with a very simple choice of interaction term,

L = 1

2
F ∧ 	F − 1

2α
J ∧ 	J , (44)

where J is a 1-form

J = αA + ω, (45)

with α a constant parameter, and ω a closed 1-form (dω = 0) associated with some field not
discussed yet. The EM Euler–Lagrange equations become

δF = (αA + ω) = J , (46)

determining Maxwell equations for the proposed material law. In local coordinates, with
A = −φ dx0 + Ai dxi and ω = ω0 dx0 + ωi dxi , we have{

∂xi Ei = (αφ − ω0),

(∇ × B)i = ∂x0Ei + (αAi + ωi).
(47)

In order to preserve gauge invariance for J , when one considers the gauge transformation
A �→ A′ = A + dχ , ω should transform according to

ω �→ ω′ = ω − α dχ. (48)

Under this rule, the Lagrangian is manifestly gauge invariant.

Topological properties. The integral of J (spatial part) along a curve inside the sample, has
two components, coming from the potential αA and the new current ω. Note that αA + ω is
equivalent to α(A+dχ)+ (ω−α dχ). Then, the circulation of J contains two gauge-invariant
components. In the present model, the circulation of ω vanishes for trivial topologies because
of Stokes’ theorem.

Note that, the new current being closed, there is a gauge fixing where ω locally vanishes,
by an adequate selection of χ . However, the ω-independent theory, which may be identified
with the basic London equations [10] is somehow unsatisfactory, because one loses physical
information. In particular, note that, although locally vanishing, ω can however contain a
topological charge for non-trivial topologies, like a hole on a plane as configuration space
(or an infinite cylinder in 3D space), i.e.

dω = 0 ⇒ ω � ∇f �⇒
∮

ω · dl = 0. (49)

Continuity. At this stage, the continuity equation, δJ = 0, is not a consequence of gauge
invariance, because we have not considered yet the full action functional. Here δJ = 0 is
a consistency condition for Maxwell equations, and determines the relation αδA + δω = 0
between the EM potential and the new current. According to this, if one takes the ω-
independent formulation, the gauge fixing freedom is lost, and one should work within the
Lorenz gauge condition δA = 0.

Wave equations. By using the definition of F = dA and applying the exterior derivative to
the material Maxwell equations, in order to eliminate the new current, we get

dδF = αF . (50)

The left-hand side represents de D’Alembertian of the EM field (δ dF = 0), so that we have
obtained a wave propagation equation with sources inside the sample. In local coordinates,
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and after appropriate identifications of the parameter α and the flux expulsion length scale λ

one has 
∇2B = B

λ2
+

∂2B
∂t2

,

∇2E = E
λ2

+
∂2E
∂t2

.

(51)

Recall that the gauge-independent wave equations are insensitive to the 1-form ω, which
disappears by the closedness condition. As E and B are observable quantities, these equations
are a test for the soundness of the model in which ω is closed.

Under quasi-stationary experimental conditions, where the wave propagation can be
disregarded, we get the celebrated London equation

∇2B = B
λ2

. (52)

Additionally

∇2E = E
λ2

(53)

represents a penetration of electric field, not usually considered, but mandatory for covariant
considerations [3–5].

Although ω has been eliminated in the current model, it becomes clear that it is an
unavoidable geometric ingredient to deduce London’s equations from a variational principle
while maintaining the gauge invariance. In the following section, we study the more general
case in which dω �= 0. A different physical scenario will arise.

3.2.2. The modified London model (dω �= 0). A more general model is obtained by relaxing
the closedness condition for ω, i.e., we allow for dω �= 0. Now, one can find non-vanishing
circulations for ω even for trivial topologies. Solutions for the material Maxwell equations

δF = αA + ω = J , (54)

plus the continuity equation

δ(αA + ω) = 0 (55)

will determine particular distributions of usual EM and the full current density.

Topology. The contribution of ω to the circulation relates to magnetic flux inside the sample
(recall that

∮
A ·dl = ∫∫

B ·ds). This represents the existence of vortices (quantized magnetic
flux) associated with the so-called type II superconductors [19]. The spatial distribution of
ω into compact regions where dω �= 0 and a surrounding space with dω = 0 becomes a
simplified classical model for the existence of quantum vortices in type II superconductors.
The fact that circulations embracing the vortex regions do not vanish is of importance, as it
carries information about the superconducting field related to ω.

Wave equation. The wave equation reads dδF = αF + dω, i.e.
∇2B = B

λ2
+

∂2B
∂t2

− ∇ × ω,

∇2E = E
λ2

+
∂2E
∂t2

− ∇ω0 +
∂ω

∂t
.

(56)
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Recall that the static or quasi-static approximations are obtained by neglecting either
all the time derivatives or just the second-order ones, in the previous formulae for covariant
superconductivity. It is important to note that in any case, both ∇ × ω and ∇ω0 should be
maintained, generalizing previous proposals [5]. Also, recall that though ω has been introduced
for mathematical consistency, its temporal and spatial components (ω0, ω) become observable
charge and current densities. By the moment, they have to be considered as phenomenological
quantities, but below they will acquire a (more fundamental) microscopic significance.

3.3. A covariant, gauge-invariant and variational model of superconductivity [J (A, ψ)]

Let us now look for a field such that its associated current density ω fulfils the former
requirements of material law for EM interaction with matter. As we have already shown in
section 2, the complex Klein–Gordon field ψ represents a simple choice for that purpose,
because it fulfils covariance, gauge invariance and variational formulation requirements.
The above-introduced free parameter α will be adjusted so as to identify the correct gauge
transformation rule, and the interpretation of ψ̄ψ as the density of superconducting carriers
will bring us to the famous Ginzburg–Landau equation, which here is proposed in a covariant
and gauge-invariant framework. Recall that the superconducting carriers (Cooper pairs) are
spin-0 combinations of electrons, and thus, the KG equation seems to be a reasonable starting
point for a covariant field theory of superconductivity. Thus, identifying ψ as a charged KG
field, the London current density term ω may be expected to be

ω = ih̄q

2m0
(ψ̄ dψ − ψ dψ̄). (57)

Outstandingly, upon gauge transformations, ω verifies the required law

ω �→ ω′ = ω +
1

λ2
dχ (58)

if one defines the rules

ψ �→ e−iqχ/h̄ψ; ψ̄ �→ eiqχ/h̄ψ̄ (59)

and

1

λ2
≡ ψ̄ψq2

m0
= −α. (60)

To this point, m0 and q are just an effective mass and charge for the KG particles. The
transformation rules in equation (59) correspond to the internal U(1) symmetry of the charged
field.

As has been discussed elsewhere [2, 4], the KG particles may be interpreted as mediating
Higgs bosons, whose fingerprint in the theory is the mass term A∧	A for the electromagnetic
potential. In conclusion, the generalization of the covariant London Lagrangian should read

LVol = 1

2
F ∧ 	F +

h̄2

2m0
D̄ψ̄ ∧ 	Dψ − V (ψ̄ψ) Vol − m0

2
ψ̄ψ Vol, (61)

as it follows from a minimal coupling principle, applied to the field ψ . To be specific, we have
used the covariant derivative

D ≡ d + i
q

h̄
A (62)
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Now, taking variations in equation (61) respective to the 1-form A, and to the scalar fields
ψ and ψ̄ produces the set of Euler–Lagrange equations

∂

∂xν

∂L
∂(∂Aµ/∂xν)

= ∂L
∂Aµ

⇓
(δF)µ = Jµ ≡ − ψ̄ψq2

m0
Aµ +

ih̄q

2m0
(ψ̄∂µψ − ψ∂µψ̄)

· · ·

∂

∂xµ

∂L
∂(∂ψ̄/∂xµ)

= ∂L
∂ψ̄

�
∂

∂xµ

∂L
∂(∂ψ/∂xµ)

= ∂L
∂ψ

⇓
h̄

2m0

[(
∂µ − i

q

h̄
Aµ

)] [(
∂µ + i

q

h̄
Aµ

)]
ψ = ∂V

∂ψ̄
+

m0

2
ψ

�
h̄

2m0

[(
∂µ + i

q

h̄
Aµ

)] [(
∂µ − i

q

h̄
Aµ

)]
ψ̄ = ∂V

∂ψ
+

m0

2
ψ̄. (63)

When the self-interaction model is chosen to be

V = µψ̄ψ + 1
2ν(ψ̄ψ)2 (64)

one gets the covariant Ginzburg–Landau–Higgs equations of superconductivity [4]. In
geometric notation we get

dF = 0, δF = − 1

λ2
A + ω (65)

for the Maxwell equations (J includes a term due to the redistribution of carriers density),
and

h̄

2m0
Tr[g(D̄,D)](ψ) = [µ + ν(ψ̄ψ)]ψ +

m0

2
ψ (66)

for the carriers wavefunction in superconducting state.

3.3.1. Energy–momentum. Starting from equation (61) and keeping in mind that L depends
on the fields Aµ,ψ, ψ̄ , one may calculate the full energy–momentum tensor from the
expression

�µ
ν = ∂L

∂(∂µAρ)

∂Aρ

∂xν
+

∂L
∂(∂µψ)

∂ψ

∂xν
+

∂L
∂(∂µψ̄)

∂ψ̄

∂xν
− δµ

ν L, (67)

which will account for the self-energy of the electromagnetic and KG fields, plus the
interaction. The calculation results in the symmetrized form

T 00 = E2

2
+

B2

2
+

h̄2

2m0

(
∂0ψ̄∂0ψ +

q2

h̄2 A2
0ψψ̄ + D̄iψ̄Diψ

)
+

m0

2
ψ̄ψ + V (ψ̄ψ). (68)
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This is nothing but the GL free energy with relativistic effects. Recall that the nonrelativistic
conventional expressions have been augmented not only by the particles rest energy, but also
by the electrostatic terms E2 and∣∣∣ iq

h̄
A0ψ

∣∣∣2
≈ λ2ρ2/2, (69)

as one could obtain from equation (44) in the London limit.

3.3.2. Nonrelativistic limit. A straightforward calculation allows us to obtain the
nonrelativistic limit of the GL Lagrangian. This will produce a Schrödinger-like equation for
obtaining the low-frequency limit of the time-dependent Ginzburg–Landau (TDGL) theory.

As a starting point, we split up the wavefunction in the form

ψ(x, t) ≡ �(x, t) e−im0c
2t/h̄ (70)

with � the nonrelativistic part of the wavefunction, for which the relations∣∣∣∣ih̄ ∂�

∂t

∣∣∣∣ � m0c
2|�|, |qA0�| � m0c

2|�| (71)

must hold. Note that in the previous formulae c is not normalized, so as to ease a quantitative
comparison. Equations (71) mean that, compared to the rest energy, the nonrelativistic energy
may be neglected, and that the potential is flat enough so as to avoid spontaneous pair creation.

By starting with equation (61), separating the µ = 0 and µ = 1, 2, 3 components, and
implementing the above relations, one obtains

Lnonrel � −1

4
FµνF

µν − ih̄

2
(�∂0�̄ − �̄∂0�) +

h̄2

2m0
D̄�̄ · D� − V (��̄), (72)

with D the spatial part of the covariant derivative. We remark that this Lagrangian produces the
TDGL equations for the nonrelativistic limit, as well as the correct limit for time-independent
solutions, in which case one recovers the conventional GL free energy. This point may
be easily checked, just by examining the Euler–Lagrange equations. When one considers
variations with respect to �̄, the familiar Schrödinger-like equation for � is obtained:

ih̄
∂�

∂t
= h̄2

2m0

(
∇ +

iq

h̄
A

)2
� + µ� + ν|�|2�. (73)

Recall that the inclusion of the mass term for the relativistic KG field has been essential in
order to reach the above result.

3.4. Tensorial material law J (� · A)

The wave equations (51), or their quasi-stationary approximations (52) and (53), determine
the penetration profiles for the electromagnetic field in a type I superconductor. As mentioned
before, equation (52) is the widely accepted London model for the penetration of the magnetic
field and (53) is its electric counterpart, which has been disregarded for decades since the
pioneering works of the London brothers [10, 11], who concluded that it was not physically
sound to consider a finite decay length for the electric field.

Following the geometric orientation of this paper, we state that maintaining the magnetic
penetration depth and rejecting the electric one (making it zero, as an ansatz) is inconsistent
with the idea of covariance. This has also been recalled in [3–6], where several theoretical
proposals along the lines of our study are given, some of them also connected with the
experimental reality [5, 6]. However, a new controversy has appeared in the literature about
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the subject of an electric penetration depth in superconductors. There are firmly grounded
theoretical reasons, as well as new experiments (see [9]) which support that, though nonzero,
the typical penetration length of the electric field is negligible with regard to the typical one
for the magnetic field. Roughly speaking, non-superconducting charges in the material, which
do not play a role in the equilibrium electric current transport, must be taken into account when
an electric field generates an electrostatic response in the sample. The order of magnitude
of the E-penetration depth related to the normal charge density distribution happens to be
much smaller than its magnetostatic counterpart, and this explains the lack of evidence for the
electrostatic phenomenon, at least within the experimental conditions considered.

In our phenomenological approach to the subject, the former physical considerations can
be incorporated into the material law for the superconducting state in a covariant and gauge-
invariant way. As a preliminary proposal, let us consider an a bit more general material law
than that introduced in section 3.2. To be specific, let us concentrate on a still linear, but
tensorial relationship J (A) of the form

J = � · A + � (74)

with the (1, 1) tensor � depending upon two phenomenological constants in the form
�i

i = α,�0
0 = α + β and vanishing non-diagonal components, in a suitable affine coordinate

system (the rest frame for the sample). The intrinsic tensor � could be computed in arbitrary
coordinate systems through the standard transformation law for (1, 1) tensors.

Gauge invariance. Note that an additional 1-form � has been added to the material law for
gauge invariance considerations. In particular, under a gauge transformation A �→ A + dχ ,
the corresponding gauge transformation for � becomes

� �→ � − � · dχ. (75)

Within the above model, we have the Maxwell equations

dF = 0 δF = J = � · A + �. (76)

As stated before, these should be completed with the continuity equation δJ = δ(� · A) +
δ� = 0, which gives information about the properties of the additional current �. On the other
hand, the simplifying hypothesis dω = 0 assumed in the first London model (section 3.2.1)
cannot be translated into this model because

d� = 0 and d(� − � · dχ) = 0 (77)

will be, in general, inconsistent for an arbitrary gauge function χ , i.e., one can have
d(� · dχ) �= 0 for a nontrivial tensor �.

Wave equations. A straightforward computation allows us to obtain the particular form of the
wave equations (20) for this case. One has

�B = B
λ2

− ∇ × Ω (78)

and

�E = E
λ2

− ∇φ

ν2
− ∇�0 +

∂Ω
∂t

(79)

with the definitions α = −1/λ2 and β = −1/ν2.
We emphasize that, under a static configuration (all the time derivatives are neglected),

the former equations become

∇2B = B
λ2

− ∇ × Ω (80)
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and

∇2E =
(

1

λ2
+

1

ν2

)
E − ∇�0 ≡ 1

λ2
e

E − ∇�0. (81)

As proposed in [9], the electrostatic penetration depth combines the effects of the magnetic
one (λ) and of another phenomenological constant (ν). The microscopic origin of such
dichotomy has been discussed in that work within the BCS theory framework. At the level of
this paper, what we can state is that � is the macroscopic manifestation of internal degrees
of freedom beyond the Ginzburg–Landau U(1) gauge-invariant model. Just note that the
tensorial gauge transformation rule in equation (75) does not allow us to introduce a complex
scalar field ensuring a gauge-invariant theory in the manner of equations (58) and (59). Further
aspects of this problem will be discussed elsewhere.

4. Noncovariant material laws in conducting media

In the previous section, we have exploited the concept of relativistic covariance for studying
electromagnetic material laws in conducting media. Having settled the basis for the
geometrical description in the four-dimensional Minkowski space, we are ready to discuss
about appropriate restrictions to three-dimensional Euclidean space. This will be done below.
The motivation for this part is to justify the use of restricted variational principles in the study
of quasistationary conduction problems.

4.1. Breaking spacetime covariance: reference frame

In this section, a particular reference (rest or laboratory) frame will be chosen, allowing us to
decompose the EM 2-form F into its electric and magnetic vector field components. From
a geometric point of view, a reference frame corresponds to the choice of local coordinates
(preferably affine) in the spacetime manifold M. However, in order to maintain the freedom
about the spatial coordinates (spatial covariance), we will consider the splitting M = R × Q,
where Q is the three-dimensional Euclidean space, or an open submanifold with boundary if
the particular properties of the system make it desirable. R represents the absolute time for
the laboratory frame, and we have both natural projections π1 and π2 of R × Q over each
factor. Also, by fixing a time value t, there is a trivial morphism jt : Q → M, jt (q) = (t, q),
allowing us to pull-back forms in M into forms in Q. By doing it for each point of an interval
[0, T ], we can define one-parameter families of forms in Q. Free selection of spatial frames
means that the EM theory is now developed in the 3D tensor analysis framework. When
necessary, we will also fix a gauge in order to simplify some equations, but gauge invariance
of the theory must be maintained even after breaking covariance. Different components of
the spacetime forms are obtained by pulling-back the original form (getting the space-like
component) or its contraction with � = ∂t (time-like component), the natural vector field on
the π2 fibres R.

With this notation we can obtain the corresponding components of the EM field, the
potential and the current density, associated with the reference frame. The Hodge operator
in Q, with the Euclidean metric gE = δij (Kronecker’s delta), will be denoted by ∗ in order
to distinguish it from the spacetime 	 Hodge operator in M, and the exterior differential in
Q will be denoted by d instead of the d in M. Similarly, the (Q, gE)-codifferential will be
denoted by δ.
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Now, we can define the vectorial and scalar fields in Q

j ∗
t (F) = ∗B(t), j ∗

t (i�F) = −E(t),

j ∗
t (A) = A(t), j ∗

t (i�A) = −φ(t),

j ∗
t (J ) = J(t), j ∗

t (i�J ) = −ρ(t),

(82)

with the obvious identification of magnetic and electric vector fields, vector and scalar potential
fields, as well as electric vector current and charge densities. Spatial r-dependence of the fields
has been avoided in the previous definitions for simplicity. Maxwell equations in the reference
frame take the geometric form

dF = 0 −→ {δB = 0, dE + ∂t (∗B) = 0},
δF = J −→ {δE = ρ, ∗dB − ∂tE = J}. (83)

Quasistatic limits, with some field constant in time can be considered in the previous equations.
If one neglects ∂t (∗B), i.e., electromagnetic energy is only stored in an electric form, one

reaches the so-called EQS (ElectroQuasiStatic) regime, in which

δB = 0, dE = 0

δE = ρ, ∗dB − ∂tE = J.
(84)

In contrast, the MQS (MagnetoQuasiStatic) approximation corresponds to neglecting ∂tE.
Then

δB = 0, dE + ∂t (∗B) = 0

δE = ρ, ∗dB = J.
(85)

Apparently, the EQS and MQS regimes arise when some characteristic speed in the
problem is small as compared to c. In the general case, when no speed is neglected, energy
is alternatively stored either in electric or magnetic forms, and one has a propagating wave.
In the next section, we will concentrate on systems for which the MQS limit is attained. Our
scenario will be as follows: some initial magnetostatic configuration is perturbed, giving place
to a transient process in which electric fields and possible charge densities appear. Then,
the system is driven to a final magnetostatic configuration, and remains there until perturbed
again. Dissipation J · E can appear in the transient process and, although small, it cannot be
neglected in the study.

4.2. Spatial variational principles in quasistationary processes: the law J (F)

As was seen before (sections 2.2 and 3), the genuine variational formulation of electrodynamics
is done in R

4 and in terms of the potential 1-form A. However, some physical systems are
successfully analysed in fixed reference (laboratory) frames, while keeping spatial covariance.
For instance, this is trivially true when one focuses on the static equilibrium configuration of
conservative systems. Then, minimization of energy produces equations determining the fields
E and B. What we show below is that such idea may be generalized to the quasi-stationary
evolution of dissipative systems. Under certain conditions, dynamical equations produced by
spatial variational principles are justified.

In classical mechanics it is well known that an initially conservative system which is
slowly drifted by an additional small non-conservative force, linear in the velocity, admits an
approximate variational principle. This represents an adiabatic evolution, in which the energy,
although not conserved, varies slowly according to the adiabatic parameter. More specifically,
let us consider the dynamical equation

m
d2x

dt2
+ ∂xV = −λ

dx

dt
(86)
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with small parameter λ. By adding to the Lagrangian L = (1/2m)(dx/dt)2 − V (x) the
so-called Rayleigh dissipation function [20] (1/2)tλ(dx/dt)2 we find the Euler–Lagrange
equation

m
d2x

dt2
+ ∂xV = −λ

dx

dt
− tλ

d2x

dt2
, (87)

which differs from the correct one in a negligible term for small time intervals, because both t
and λ are considered small.

Within a time interval [0,�T ] the increments fulfil the equation

m�

(
dx

dt

)
+ 〈∂xV 〉�T = −λ�x − 1

2
�T �

(
λ

dx

dt

)
. (88)

The adiabatic hypothesis can be reformulated by saying that the dissipative force λ dx/dt

varies slowly along the evolution. In classical mechanics, this is often used for conservative
systems with periodic orbits in which an adiabatic evolution generates small variations of the
parameters on each cycle, e.g., the Poincaré map. It can also be used to perform a numerical
integration through time discretization and minimization of the approximated action functional
at each step, allowing us to apply minimizing techniques for the integral, usually more reliable
than a direct numerical integration of the differential equations. Recall that the Euler–Lagrange
equations are just stationarity conditions for the action integral, but in any reasonable physical
variational system, the solutions are local minimizers for the action, although possibly not
global ones.

The above method can also be performed for an EM system with slow drift between
stationary configurations through a transient material response to small source variations. The
procedure could be developed for quite general systems but, in order to fix the ideas and taking
into account the particular application which follows, we will consider an MQS approximation
for a (type II super-)conductor, with vanishing E and ρ in the initial and final configurations.
The transient evolution will generate a small electric field, with possible local charge density
production, that will be neglected.

We denote by B0 and J0 the initial stationary values, obviously fulfilling ∇ × B0 = J0.
B0(r) and J0(r) fields are known functions, and we do not need to introduce a potential field
for the stationary configuration. A potential vector field A is chosen so as to describe the
transient evolution, while the scalar field φ is ignored in this approximation and should be
determined by the null charge density prescription. This can be interpreted as the selection of
the temporal (Weyl) gauge. Then, along the evolution one has

B(t, r) = B0(r) + �tB(r) with �tB(r) = �B(t, r)

J(t, r) = J0(r) + �tJ(r) with �tJ(r) = �J(t, r).
(89)

Additionally

�tB = ∇ × A, E = −∂tA (90)

as the representation in terms of the potential.
Faraday’s law is automatically verified (geometric equation) while Ampere’s law is the

one to be (approximately) determined through a variational principle. The system under
consideration will fulfil the following conditions:

(1) the finite sample material occupies the region R0, R0 ⊂ Q with Q also finite but ∂Q far
away from R0 so that the material EM response decays to zero in ∂Q, and the monitored
sources are out of Q determining the feeding of the system through boundary conditions
of the magnetic field in ∂Q. Such experimental conditions are those of a PDE control
type problem, with a vectorial distributed parameter Bs from the sources and control
dynamical equations, Maxwell equations, determining the response of the system.
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(2) the adiabatic hypothesis determines slow variations of the sources from an initial value
Bs0 to a final value Bs1 in a time interval [0, T ], with corresponding slow evolution
B0 �→ B1 and J0 �→ J1. Correspondingly, the transient electric field E(t) is also small.
The final values are determined by the variables to be used in the analysis �tB and �tJ,
with B1 = B0 + �T B, J1 = J0 + �T J. We also neglect the EM wave by considering
instantaneous material response, that is, with typical time response negligible with regard
to the typical time parameter of the control variable. Moreover, and similarly to the
previous mechanical example, along the adiabatic evolution the electric field, playing the
role of the dissipative term, can be considered constant, i.e., E = E(r) in [0, T ] and
∇ × B = J.

The Maxwell equations must be complemented with some material law, which we consider
in the form �J = G(E). With E being small along the time interval, we make the hypothesis
that we can properly approximate the material law by linearizing it to �J ≈ K · E, with K a
3 × 3 matrix representing the Jacobian of G in the origin. Inhomogeneous K(r) could be
considered, but here we will choose the case of K constant within the sample and vanishing
outside.

Inspired by the above-mentioned mechanical Lagrangian, we define an MQS Lagrangian
density for (R×T ∗Q,π, R×Q) in order to determine a variational field theory for the system

L ≡ 1
2 |∇ × A|2 + 1

2 t∂tAT · K · ∂tA (91)

where the super-index T denotes the transpose. The associated Euler–Lagrange equations
become

∇ × (∇ × A) + ∂t (tK · ∂tA) = 0, (92)

and working on them by substitutions we get

∇ × �tB = K · E + t∂t (K · E) ≈ �tJ. (93)

Above ∂tE is neglected by the adiabatic hypothesis. Note that we have obtained Ampere’s
law, while Faraday’s law was already fulfilled by the potential representation.

The next step is to perform the time integration along [0, T ] in order to get a purely spatial
principle. We have chosen T small for a better approximation when neglecting t∂t (K ·E). This
allows us to perform an approximate integral by just considering mean values according to the
initial and final values of the magnetic field and current density, as well as constant E within
the interval. Writing the Lagrangian in terms of these variables we find the minimization
principle

min
∫

Q

vol
∫ T

0

(
1

2
(�tB)2 +

1

2
tE · �tJ

)
dt. (94)

After integrating in time according to the above prescriptions, and avoiding global numerical
factors, we get

min
∫

Q

((�T B)2 + T 〈E〉 · �T J) vol (95)

a purely spatial principle.
For the sake of completeness and consistency, let us check that, under the hypothesis

considered, the spatial variational principle reproduces the correct dynamics. For further
application, we will do that in an unconventional way, rewriting the spatial Lagrangian in
terms of the variable �T B by using both Ampere’s law and the linearized material law.
Note that, contrary to the prescription of Faraday’s law through the use of the potential in
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the spacetime variational problem, we are here prescribing Ampere’s law by using it in the
substitutions of the spatial Lagrangian.

Starting from

L = 1
2 [(�T B)2 + T (∇ × �T B)T · K−1 · (∇ × �T B)], (96)

and performing the Euler–Lagrange equations for the field theory in the spatial variables, we
obtain

�T B = −T ∇ × [K−1 · (∇ × �T B)] (97)

which, through (∇ × �T B) = �T J and K−1 · �T J = E, becomes

∇ × E +
�T B
T

= 0 (98)

that is, the discretized version of Faraday’s law.
We emphasize that the above property is mainly grounded in the time discretization,

where the vector potential A can be rewritten as −T E, an integration which cannot be
directly fulfilled in spacetime, and in the fact that the scalar potential has disappeared from the
formulation. In fact, the reader can write the spatial Lagrangian in terms of the vector potential
A, i.e., prescribing the time discretized Faraday’s law, and obtain in a more conventional way
Ampere’s law as the Euler–Lagrange equations for this Lagrangian. We have sketched this
in (91)–(93)

For a more physical interpretation of the result in equation (95), one can identify a
magnetic inertial term and a dissipative term, which are balanced in order to minimize the
addition of magnetic flux changes and entropy production [13].

4.3. Application to hard superconductivity: variational statement for nonfunctional {E, J}
laws

Some physical systems are better described by general relations (graphs) between their
variables, rather than by functional ones. As a particular case of technological interest,
we recall the conduction property of the so-called hard type-II superconductors. According
to the phenomenological Bean model [21], the scalar components of E and J, when currents
flow along a definite direction, are related by the nonfunctional relation depicted in figure 1.
Note that, if the electric field is nonzero at some point, one has

J = Jc
E
|E| (99)

at such point. However, if E = 0 any value J ∈ [−Jc, Jc] is allowed. From the physical point
of view, the superconductor reacts with a maximal current density flow to the application of
electric fields. When the excitation is cancelled (E → 0) the flow may remain as a persistent
nondissipative current. Note that the hard superconducting material displays the conventional
quasistatic zero resistivity, until a certain level of current transport is demanded (Jc). Current
densities above this threshold are no longer carried by supercharges, and a high electrical
resistance is observed.

A fundamental justification of the above model (so-called critical state model), the physical
interpretation of the material parameter Jc (critical current), and more sophisticated versions
may be found in [13, 22, 23] and references therein.

Here, we recall that variational methods are especially useful for solving and generalizing
the above statement. To start with, we interpret it as a more realistic limiting process (see
figure 1). Thus, the hard material allows lossless subcritical current flow, while it reacts with
a high resistivity E = R(J − Jc) for J > Jc (analogously for negative values of J ). The
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J

c

c

−J

Figure 1. {E, J } graph (conduction law) for a hard type-II superconductor, according to Bean’s
model. Vertical lines correspond to infinite resistivity above Jc .

harder the material, the higher value of R, and the more realistic the graph law approximation.
Then, one can start with equation (95) and note that, as R becomes larger, the second term
also increases with J > Jc. In the limit of infinite slope, this fact can be taken into account by
reformulating the variational principle as

minS = 1

2

∫
Q

(�B)2 vol for |∇ × B| � Jc. (100)

The inequality (unilateral constraint) determines that the mathematical framework for the
model is the so-called optimal control theory [24], an extension of the classical variational
calculus for bounded parameter regions. In the Optimal Control language, we have a
performance (cost) functional S to be minimized under the control equation ∇ × B = J for
bounded parameter |J| � Jc. As a very relevant property of this variational interpretation, we
remark that the control region for the parameter may be understood as a physically meaningful
concept. Thus, one may pose the problem in the very general form

minS = 1

2

∫
Q

(�B)2 vol for ∇ × B ∈ �, (101)

with � ⊂ R
3 some restriction set, prescribed by the underlying physical mechanisms. The

conventional statement, given by the graph in figure 1 is nothing but the particular case
� = [−Jc, Jc]. This is depicted in figure 2. In the literature, several possibilities for the
set � have been studied, and identified as the fingerprint of different physical properties.
For instance, elliptic restriction sets have been shown to reproduce experimental observations
related to anisotropic current flow [25], a rectangular set has been used for producing the so-
called double critical state model [26], in which two independent critical current parameters
(parallel and normal) are used, etc.

4.3.1. Technical note. The use of the principle (95) as a basis for obtaining (101) deserves
some explanation. Not all the hypotheses used in the former case are straightforwardly
translated. In particular, one has to recall that the linearization �J = K · E has to be
considered for excursions of J around Jc. However, according to figure 1, when the electric
field is reversed one has �J � 2Jc. Again, the finite jump may be smoothed by taking a small
time step. Then, the size of the region where �J = 2Jc is negligible, and the fault has a very
small weight in the integral to be minimized.
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Figure 2. Restriction sets for the current density (J ∈ �), corresponding to the behaviour of hard
type-II superconductors. Optimal control solutions obey the condition J∗ ∈ ∂�.
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y[B (x), B (x)]z

Figure 3. Superconducting slab, subject to magnetic field parallel to the surface.

Finally, we recall that control equations linear in the parameter, as the current case of
interest, produce the so-called bang-bang solutions [24], characterized by the condition

J∗ ∈ ∂� (102)

i.e. the optimal solutions take values at the boundary of the allowed set. For instance, the
control variable jumps between 1 and −1 when � = [−1, 1] (see figure 2).

4.3.2. Example: the infinite slab in parallel field. The optimal control approach to critical
state problems in superconductors has been sometimes misunderstood and qualified as a more
or less intuitive approach of restricted applicability. Among other questions, it has been
said that it lacks information, because the electric field is absent of the theory. However, this
quantity is in the essence of the variational statement, which has been obtained from the general
Lagrangian, under the quasi-stationary assumptions (section 4.2). Below, we show with an
example that, indeed, the variational statement contains the electric field. Thus, when the
minimization process is performed, one obtains the condition that J belongs to the boundary,
and also a set of Lagrange multipliers (associated momenta in the Hamiltonian formalism)
closely related to the electric field. The comparison of our equations with a more conventional
approach that directly uses an E(J) relation will prove this aspect.

Let us consider the infinite superconducting slab depicted in figure 3 (|x| < d/2; |y|, |z| <

∞), and the problem of determining the electromagnetic response to an excitation field parallel
to the surface. Owing to the symmetry, one may use the assumptions{

B = (0, By(x), Bz(x))

J = (0, Jy(x), Jz(x)).
(103)
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Assuming isotropic conditions, equation (101) takes the form

minS = 1

2

∫
Q

(�B)2 vol for J =
∣∣∣∣∂B
∂x

∣∣∣∣ ∈ � = [0, Jc]. (104)

Recall that the cost function depends on the field increment �B = B − B0 for each step of
time, in the evolution of the system.

According to Pontryagin’s maximum principle [24], this problem is solved by combination
of (i) the canonical equations for the associated Hamiltonian

H = p · �J − 1
2 (�B)2, (105)

and (ii) �J∗ = J∗ − J0 such that H(�J∗) � H(�J),∀J ∈ �, i.e.,

max[p · �J] ⇒ ∂B
∂x

= Jc
p
p

. (106)

This leads to the system

∂By

∂x
= Jc

py

p

∂Bz

∂x
= Jc

pz

p

∂py

∂x
= �By

∂pz

∂x
= �Bz.

(107)

By using the definition (py, pz) ≡ �t(Ez,−Ey) the system may be rewritten as

∂By

∂x
= Jc

Ez

E

∂Bz

∂x
= −Jc

Ey

E
∂Ez

∂x
= �By

�t

∂Ey

∂x
= −�Bz

�t
.

(108)

Taking derivatives, and inserting the standard notation of dots and primes, one obtains

∂2By

∂x∂t
= Jc

ĖzE − EzĖ

E2

∂2Bz

∂x∂t
= −Jc

ĖyE − EyĖ

E2

(109)

and
∂2By

∂x∂t
= E′′

z

∂2Bz

∂x∂t
= −E′′

y (110)

and thus,

E′′
z = Jc

ĖzE − EzĖ

E2
E′′

y = Jc

ĖyE − EyĖ

E2
. (111)

Now, using polar coordinates in the plain,

Ey = E cos ϕ Ez = E sin ϕ (112)

and taking space and time derivatives, it follows

E′′
z = E′′ cos ϕ − 2E′ϕ′ sin ϕ − E(ϕ′)2 cos ϕ − Eϕ′′ sin ϕ

E′′
y = E′′ sin ϕ + 2E′ϕ′ cos ϕ − E(ϕ′)2 sin ϕ + Eϕ′′ cos ϕ

Ėy = Ė cos ϕ − Eϕ̇ sin ϕ

Ėz = Ė sin ϕ + Eϕ̇ cos ϕ.

(113)

Eventually, back-substitution into equation (111) leads to the system{
E′′ = (ϕ′)2E

2ϕ′E′ + Eϕ′′ = Jcϕ̇.
(114)
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These differential equations, together with suitable boundary conditions, allow us to obtain
the penetration profiles for the modulus of the electric field and for its angular direction. They
have been obtained from our variational approach, and fully coincide with the expressions
obtained by the E(J) method in [27].

5. Conclusions and outlook

In this paper, we have shown that the geometric formulation framework of the classical
electromagnetic field in terms of differential forms in Minkowski space may be extended to
the study of conducting materials.

Related to recent intriguing experimental observations, and to the underlying
dissatisfaction caused by a noncovariant theory for several aspects of superconducting
electrodynamics, we have proposed a new phenomenological approach to the problem. We
show that with the geometric jargon, the theory may be highly simplified. In the language
of 1-forms, covariant superconductivity is merely a linear law which admits the inclusion of
phenomenological constants and physical quantities. Such quantities allow a direct physical
interpretation, as they are a part of wave equations in which they couple to the observable
macroscopic fields E and B.

Having clarified the basis of a covariant theory, we also present the complementary side
of how covariance should be broken if required by the mathematical counterpart of some
physical process. Thus, we show that quasistationary conduction problems may be treated
in a spatial 3D covariant framework by pullback of the Minkowski space 1-forms to the R

3

Euclidean space. Taking advantage of this prescription, we have been able to justify the use
of restricted variational principles in some problems of interest for applied superconductivity.

Two different possibilities for the material law have been considered, J (F) and J (A),
i.e. the current density 1-form either depends on the electromagnetic field 2-form or on the
potential 1-form. Being the simplest choice, linear dependences have been considered.

The linear law J (F) is obviously covariant and gauge invariant by construction.
However, it is not variational. Only after breaking covariance, and under a quasi-stationary
approximation, one can issue a restricted variational principle for such a case. In particular,
we obtain an approximated spatial variational statement for linearly dissipating systems
(nonconservative forces are proportional to ∂tA, whose temporal variation may be considered
small).

The linear law J (A) is covariant and allows a variational statement by endowing the
electromagnetic field Lagrangian with an interaction term of the form J ∧ 	J . However, in
this case, gauge invariance has to be required. By doing it, one is naturally led to add new
currents, generating the equations of superconductivity (J = αA + ω). The most relevant
features of this phenomenon are direct consequences of internal symmetries in the field theory.
Within the so-called London approximation, the main field is A. However, the 1-form ω is
required by the theory, coming from an additional field. Outstandingly, this field has observable
consequences (as the presence of electrostatic charges and the flux quantization condition),
and is sensible to the topology of the material. Just a step further produces the so-called
covariant Ginzburg–Landau theory. If one identifies ω as a Klein–Gordon-like probability
current density (ω ∝ ψ̄ dψ − ψ dψ̄), one has a conduction theory with two fields (A, ψ),
which may be readily identified as the covariant and gauge invariant generalization of the
(non-covariant) GL equations of superconductivity. Here ψ represents the wavefunction of
the superconducting carriers.

In the first step, providing the simplest possible covariant expression for the conductivity
of a material, we have proposed J = αA + ω. This fits many experimental observations,
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including the influence of electrostatic fields on superconductors [7]. However, accounting
for other classical [11] and very recent experiments [9], such proposal has been generalized to
J = � ·A+�, with � a (1, 1) tensor. This form allows us to unify the referred manifestations
of superconductivity by either equal or nonequal phenomenological constants in the diagonal
terms of �. In this sense, when � is nontrivial, we argue that internal symmetries of the charge
carriers, and gauge invariance are only compatible through a BCS approach. In this case, an
additional field must be introduced, as not only the superconducting carriers are relevant.
Nonsuperconducting charges may contribute to the static response of the material and their
associated fields could be a matter of further research.

Finally, we stress that the variational interpretation of a priori nonvariational conducting
material laws under adiabatic approximation has provided us with a method to treat exotic
materials, in which the relation between the fields is well determined through a graph.
In particular, this has noticeable consequences in the phenomenological theory of type-
II superconductors. We have shown that the so-called Bean’s model for hard type-
II superconductors admits a variational formulation, grounded in basic properties of the
electromagnetic Lagrangian. This property is of utter importance in the field of applied
superconductivity as it allows us to introduce numerical implementations for realistic systems,
affected by finite size effects. At the level developed in this work, the material properties are
just included by augmenting the basic term F ∧ 	F with a dissipation function contribution.
Extensions of the theory in which the base Lagrangian includes the conservative terms of
superconductivity (J ∧ 	J , D̄�̄ · D�, . . .) are expeditious.

Variational methods are shown to be equivalent to alternative treatments of the problem,
but offer a number of advantages. New mathematical tools, as the optimal control theory,
useful for discussing about the existence and form of the electromagnetic problem solution,
as well as for hosting numerical implementations, are incorporated.
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